Switch to Desktop Site
 
 

The tiny, slimy savior of global coral reefs?

Next Previous

Page 2 of 6

About these ads

“There is evidence for what you might call an adaptive response,” says Baker. “The ability to sort of mix and match your symbionts depending on the environment that you’re experiencing, you could imagine would be a huge evolutionary advantage.”

But some think any interference in nature is bad, given the many well-meaning correctives that ended badly. For others, the idea that corals can adjust to higher temperatures by switching algae is debatable: Abundant evidence of stressed and dying reefs around the world suggests otherwise. To this, Baker responds that the absence of evidence shouldn’t be taken as evidence of absence: We don’t know what reefs might look like if they weren’t adapting at all, he says.

More to the point, Baker and others say, even if we stop emitting greenhouse gases tomorrow, it’s too late to avoid a few degrees of warming this century given what’s already in our atmosphere. Even assuming that the fossil fuel puzzle is solved quickly, corals will inevitably face warmer seas. That’s reason enough, Baker says, to research reefs’ ability to adapt and, if possible, try to enhance it.

Why is it important that coral reefs survive? Coral reefs host the most diverse ecosystems in the oceans – or, arguably, anywhere on the planet. Earth has 34 major groups of animals, or phyla. Thirty-two exist in the ocean, compared with just 12 on land. Thirty live on coral reefs. People often call coral reefs the “rain forests of the ocean.” But as Osha Gray Davidson wrote in his 1998 book “The Enchanted Braid,” rain forests might better be called “the coral reefs of the land.”

Next Previous

Page 2 of 6

Share