Share this story
Close X
Switch to Desktop Site

How does star-making start? For first time, scientists might get a glimpse.

Scientists have yet to see a star form all on its own – away from the influence of surrounding stars. Now, researchers say they might have found a candidate. 

An artist's rendering of the life-cycle of a star, starting in the cloud at upper left.

Bill Saxton/NRAO/AUI/NSF

About these ads

Long before a star is a gleam in anyone's telescope, it begins its ascent to stardom as a cold fragment in a vast cloud of gas and dust.

A team of astronomers reports capturing one of these stellar embryos in a small corner of an enormous molecular cloud some 600 light-years away in the constellation Perseus.

If the team's interpretation of its data holds up to further scrutiny, the region would open a window on a critical, poorly understood stage of a star's evolution.

Much of what astronomers have learned about star formation comes from studying molecular clouds where stars already have formed. These clouds continue to produce relatively dense clumps of dust and gas that will become another generation of stars. But the formation and evolution of these newcomers can be heavily influenced by their already burning siblings.

For example, young stars burn hot and so give off strong stellar winds, which can sweep surrounding regions clean of other gas clumps. When there are clusters of young stars, this process becomes especially powerful. Even a star ending its life in an enormous explosion called a supernova can stifle star formation nearby because of the material the blast ejects. On the other hand, at longer distances, stellar winds or a shock wave from a supernova can trigger clumping.

Pristine stellar nursery

These processes make it difficult to answer the question: What processes influence the first stars to form in a cloud? The segment of the Perseus molecular cloud the team studied hosts no other stars, providing a pristine stellar nursery for testing hypotheses about these initial influences.

“Some stars have to form first for those later triggers to develop,” says James Di Francesco, an astronomer at the University of Victoria in British Columbia and a member of the team reporting the results in an upcoming issue of the journal Astronomy & Astrophysics.


Page:   1   |   2   |   3

Follow Stories Like This
Get the Monitor stories you care about delivered to your inbox.