Share this story
Close X
Switch to Desktop Site

MIT's self-assembling robots: the building blocks of the future

These small whirring cube bots could potentially assemble into various objects on command, likening them to Terminator 2's mutable, liquid-metal material. 

The team at MIT's Computer Science and Artificial Intelligence Laboratory explain the inner workings of their small magnetic cubes.
About these ads

It starts with a buzz, a quiver, and a sudden jump. 

That's how the Massachusetts Institute of Technology's new M-blocks operate. The self-assembling cube robots could potentially transform to tackle various tasks – from inspecting tight spaces to morphing into everyday objects – all from a relatively simple design.

The blocks have no exterior moving parts but contain a small motor inside. 

"That motor spins up a flywheel, and that flywheel has a large moment of inertia, and so by spinning, the cube stores a bunch of energy in the flywheel," says Kyle Gilpin, a postdoctoral associate who worked on the project.

The flywheel runs at up to 20,000 revolutions per minute, but a braking mechanism stops it in about a hundredth of a second. The M-blocks then use the angular momentum from their flywheels to move. When the wheel stops, it imparts its energy to the rest of the cube. 

"All energy stored in that flywheel is then transferred to the body of the cube, causing it to roll or to jump or to climb as you saw in the video," Mr. Gilpin says.

The cubes align using small magnets on every face. Their edges are also magnetized to allow them to "climb" on top of each other, keeping them connected while a cube flips from one face to the next.

"The magnets allow them to climb on metal structures," explains Daniela Rus, director of the MIT Computer Science and Artificial Intelligence Laboratory

Ms. Rus says the team is focused on the science of self-assembly and the new capabilities that can be achieved with modular robots. 


Page:   1   |   2

Follow Stories Like This
Get the Monitor stories you care about delivered to your inbox.