Ice-shelf melting seen to accelerate in West Antarctica

Warming ocean waters are melting several Antarctic ice shelves faster than previously thought, a new study from NASA and the University of California, Irvine indicates. 

|
Michael Studinger/ NASA/Reuters
NASA's DC-8 flies over the Brunt Ice Shelf in Antarctica October 26, 2010 in this handout photo provided by NASA, March 26, 2015. Satellite observations from 1994 to 2012 reveal an accelerating decline in Antarctica's massive floating ice shelves, with some shrinking by 18 percent, in a development that could hasten the rise in global sea levels, scientists say, according to scientists published Thursday in the journal Science.

New research out of NASA’s Jet Propulsion Laboratory and the University of California, Irvine has found evidence that several Antarctic ice shelves, which are extremely sensitive to temperature changes in the water, are being melted from below by ocean waters heated by global warming.

The study, which was published Tuesday in the journal Nature Communications, concluded that the cause of much of lost ice from the Smith, Pope, and Kohler glaciers, which flow into the Dotson and Crosson ice shelves, came from below.

While the glaciers sit on bedrock, a portion overflows into the sea, forming a floating ice shelf. The point of where the glacier begins to float is called the grounding line, and changing grounding lines, a result of ice melt, are thought to be strongly linked to the overall mass loss from the continent. 

"Our observations provide a crucial piece of evidence to support that suspicion, as they directly reveal the intensity of ice melting at the bottom of the glaciers during that period," Ala Khazendar, a researcher with NASA’s Jet Propulsion Laboratory, said in a UC Irvine press release.

The study, which focused on glaciers in western Antarctica, where ice is melting faster than anywhere else on the continent, was conducted by measuring the thickness of the ice, and its height relative to the water. Radar data was used to assess the bottom of the glaciers, while laser measurements measured the surface elevation, allowing the researchers to calculate the thickness of the ice.

These methods allowed the research team to calculate the difference between the grounding lines in 2002 and 2014. While previous studies suggested that the Dotson and Crosson ice shelves were melting by about 40 feet per year, Dr. Khazendar's data said otherwise. The Smith glacier lost up to 230 feet per year between 2002 and 2009, a period of particularly rapid ice melting in the Amundsen Sea.

Meanwhile, the melting rates of the Pope and Kohler glaciers have decreased in the past few years due to a slight decrease in warm water reaching Antarctica between 2009 and 2014.

"If I had been using data from only one instrument, I wouldn't have believed what I was looking at, because the thinning was so large," Khazendar said in the press release, adding that both techniques consistently measured the same level of ice loss.

As the glaciers melt, more of their surface area is left exposed to the warm water underneath, which in turn pushes the grounding line further inland, creating a self-perpetuating cycle that is "unstable," as Khazendar told NPR. 

"More sections of the glacier become thinner and float, meaning that the grounding line continues retreating, and so on," Khazendar said. 

While understanding how ice shelves are changing is vital to predicting how much sea levels will rise in the future, many questions remain unanswered and require further research.

It is still unclear whether other glaciers in West Antarctica will follow in the path of Smith and melt significantly, or if they will show signs of stabilizing, like Pope and Kohler. According to Khazendar, more information about the bedrock at the grounding line of each glacier and data on ocean circulation and temperatures will help inform further research and predict how sea level rise and ocean warming will affect the glaciers in the future.

You've read  of  free articles. Subscribe to continue.
Real news can be honest, hopeful, credible, constructive.
What is the Monitor difference? Tackling the tough headlines – with humanity. Listening to sources – with respect. Seeing the story that others are missing by reporting what so often gets overlooked: the values that connect us. That’s Monitor reporting – news that changes how you see the world.

Dear Reader,

About a year ago, I happened upon this statement about the Monitor in the Harvard Business Review – under the charming heading of “do things that don’t interest you”:

“Many things that end up” being meaningful, writes social scientist Joseph Grenny, “have come from conference workshops, articles, or online videos that began as a chore and ended with an insight. My work in Kenya, for example, was heavily influenced by a Christian Science Monitor article I had forced myself to read 10 years earlier. Sometimes, we call things ‘boring’ simply because they lie outside the box we are currently in.”

If you were to come up with a punchline to a joke about the Monitor, that would probably be it. We’re seen as being global, fair, insightful, and perhaps a bit too earnest. We’re the bran muffin of journalism.

But you know what? We change lives. And I’m going to argue that we change lives precisely because we force open that too-small box that most human beings think they live in.

The Monitor is a peculiar little publication that’s hard for the world to figure out. We’re run by a church, but we’re not only for church members and we’re not about converting people. We’re known as being fair even as the world becomes as polarized as at any time since the newspaper’s founding in 1908.

We have a mission beyond circulation, we want to bridge divides. We’re about kicking down the door of thought everywhere and saying, “You are bigger and more capable than you realize. And we can prove it.”

If you’re looking for bran muffin journalism, you can subscribe to the Monitor for $15. You’ll get the Monitor Weekly magazine, the Monitor Daily email, and unlimited access to CSMonitor.com.

QR Code to Ice-shelf melting seen to accelerate in West Antarctica
Read this article in
https://www.csmonitor.com/Science/2016/1026/Ice-shelf-melting-seen-to-accelerate-in-West-Antarctica
QR Code to Subscription page
Start your subscription today
https://www.csmonitor.com/subscribe