Share this story
Close X
Switch to Desktop Site

Scientists may have found Higgs boson. What next?

Next Previous

Page 2 of 4

About these ads

However, key pieces of information that would help distinguish among the possibilities are either missing or incomplete, the researchers acknowledge.

Whatever the outcome, it's clear that the researchers involved and the theorists who predicted the existence of the Higgs bosons in the mid-1960s have entered Nobel Prize territory, to say nothing of new frontiers for exploring the nature of the universe.

"We're reaching into the fabric of the universe at a level we've never [reached] before," says Joe Icandela, a physicist at the University of California at Santa Barbara and the spokesman for one of the two major experiments hunting for the Higgs boson at CERN. "This is not like other ordinary particles. It's a key to the structure of the universe."

If the discovery the teams announced turn out to be the standard-model Higgs, it means "we've completed one part of the story, and we're on the frontier now."

Call it the energy frontier – in this case, energies that approximate levels thought to have existed in the first millionths of a millionth of a second after the big bang, which gave birth to the universe some 13.6 billion years ago.

The teams conducted their experiments using the Large Hadron Collider at CERN, an underground particle accelerator nearly 17 miles in circumference. This demolition-derby track for subatomic particles straddles the French-Swiss border outside of Geneva. It's designed to collide protons with energies comparable to those that existed in the infant universe.

At those energy levels, a standard-model Higgs boson would have existed on its own. But as the universe cooled, the Higgs bosons present at the time would have grown unstable and decayed.

Next Previous

Page 2 of 4

Follow Stories Like This
Get the Monitor stories you care about delivered to your inbox.