Close X

# Symbolic logic and the Nicelys

FOR five days, three winters ago, I sat in a Cincinnati motel room while my husband took a course in antique clock repair in a building across the parking lot. I had come with plenty to do: a fiction story to write and a book to read, ``An Introduction to Symbolic Logic,'' by the American philosopher Susanne K. Langer. I had picked the book with care. For one thing, I knew it couldn't be a fiction book that I'd take into that cell with me. Not unless I wanted my story to come out sounding just like it. Styles are highly contagious. An anthology might have worked. One writer's words may be taken as the antidote for another's. Chekhov cancels out Austen, for example.

But I wanted to take advantage of the solid block of time to digest something meatier than snippets, something all of a piece. A nonfiction book on another subject might have done as well, but very likely I would have finished it too soon. Besides, I wanted not necessarily to read, but to study -- to take a course in something myself, as my husband was doing.

This winter, my story, begun in that motel room, will be published. And looking back on notes from my journal of that year, I see that the Langer book did exert its influence, but in a way quite unlike another fiction writer's work might have.

``In what ways does the family cohere ?'' I wrote at a table by a huge picture window that dominated the tiny room. I was writing to myself about my chosen subject, a family called the Nicelys. They are not the most genteel of families, but they are a family. That fact cannot be altered. ``How are its parts related?'' I queried myself in language taken straight from Langer.

In another part of the journal I see a doodle of sorts. Actually it's the working out of symbols for a logical system: d=int``daughter''| s=int``son''| M=int``Mother''| F=int``Father''| GM=int``Grandmother''| GF=int``Grandfather''| sr=int``sister''| br=int``brother''|

(A Langer notation, ``=int'' stands for ``is identical with.'')

Thumb through the Langer book, first published in 1937, reissued in 1952 and again in 1967, and you'll see that it literally swarms with configurations that seem to have little enough to do with philosophy, much less fiction. Chosen at random:

Theorem 10a: -(a + b) = -a x -b.

Yet symbolic logic is a prime tool of philosophers. As Langer states it: ``There is something uncanny about the power of a happily chosen ideographic language; for it often allows one to express relations which have no names in natural language and have therefore never been noticed by anyone. Symbolism, then, becomes an organ of discovery rather than mere notation.''