Switch to Desktop Site
 
 

The brave new world of biotechnology and beyond

Genetic engineering and nanotechnologies will not only change our world, but perhaps even bodies

About these ads

Carlo Montemagno's motor will not be an overnight hit with Maytag. It's only 12 billionths of a meter in diameter.

But its "shaft" spins at about 1,000 r.p.m., and it can be attached to a precisely placed microscopic dollop of nickel, copper, or gold.

Built in a lab at Cornell University, Dr. Montemagno's motor - a tiny enzyme found in nearly every living organism and anchored to a metal foundation only about three times the enzyme's size - highlights one of the most far-reaching themes emerging from half a millennium of advances in physics, biology, and chemistry. Science is giving humanity the knowledge and the tools to manipulate and mix matter at its most fundamental levels to yield uniquely human combinations of form and function.

Genetics and biotechnology have been at the forefront of this revolution as scientists have turned gene-splicing into a speedy way to make novel organisms or enhance or alter traits of familiar ones. Others are looking at ways to turn collections of atoms and molecules into transistors, coatings, motors, pumps, and plumbing whose size is measured in billionths of a meter.

Initial applications of such nanotechnologies are likely to be modest. Nanoparticles bearing drugs designed to interact only with diseased cells might be among the first uses for nanoscale devices, researchers say. Over the longer term, however, others foresee self-assembling molecular computers or nano-factories rolling out thin coatings with the strength of diamonds for use on automobiles or army tanks.

Some of the most profound changes could involve humans themselves, speculates Rice University chemist and Nobel laureate Richard Smalley. "We're heading in a direction that in the next 50 to 100 years, we could actually change the nature of human beings," he says. "We are going to learn to build gadgetry at the size level of living cells. We could have implants to dramatically augment our senses. Either what we build will be something we can couple directly, like an implant, or we'll learn that we can change the genetic code and stay within the realm of biotechnology."

Next

Page 1 of 4


Follow Stories Like This
Get the Monitor stories you care about delivered to your inbox.

Share

Loading...