Share this story
Close X
Switch to Desktop Site

Superconductors ready to ramp up for the real world

About these ads

The Energizer bunny has nothing on Heike Kamerlingh Onnes. Nearly a century ago, the Dutch physicist stunned the scientific world when he discovered that if he chilled certain metals to extremely low temperatures, electricity raced through them without losing any energy.

There was just one catch: The metals had to be frozen to such frigid temperatures that the technology made no commercial sense.

More recent discoveries led to some niche applications. But today, researchers are on the cusp of applying that laboratory curiosity to a range of civilian and military technologies. They could dramatically boost the efficiency of everything from Navy destroyers to the wires that bring electricity into homes and businesses.

Superconductors - as Onnes' discovery is known - are being tested as a way to dramatically cut the risk of widespread blackouts.

"It's going to work; it's really going to work," says an enthusiastic Robert Hawsey, director of the Oak Ridge National Laboratory's Superconductivity Technology Center. Fiber optics took 20 years to emerge from the lab to become the backbone of today's information superhighway, he notes. After nearly 20 years of development, a new generation of superconductors are about to emerge from the shadows into large-scale applications.

Superconductors have a number of properties that endear them to high-tech visionaries. They have virtually no electrical resistance. In principle, once electricity begins flowing in a superconducting loop, it can flow almost forever. They carry larger amounts of electricity than standard wires and cables with similar dimensions. So superconducting components can be far smaller than their conventional counterparts.


Page 1 of 4

Follow Stories Like This
Get the Monitor stories you care about delivered to your inbox.