Share this story
Close X
Switch to Desktop Site

Can DOE build a better electric car battery?

Next Previous

Page 2 of 3

About these ads
Why EV Battery and Vehicle Design Matters

The battery system is the most complex and expensive element of an EV, which means innovations in its size, material, structure, and placement are integral to making EVs affordable and reliable enough for every American to replace their conventional combustion vehicles.

The RANGE program facilitates what Dr. Martin calls these kinds of “big swing” innovations by investing in a variety of projects that address key system challenges, but approach solving these problems from different directions. The program invests in “seedling” early-stage projects – like the collaborative project between EnZinc, Inc. and the U.S. Naval Research Lab funded at only $448,000. According to EnZinc’s president and co-founder, Michael Burz, “What we knew was needed is a systems approach to battery design – a reimagining of the fundamental architecture of the battery. Where most battery development uses exotic materials in a fundamentally conventional way, we are using conventional materials in an exotic architecture.” EnZinc’s zinc-air battery has the potential to double range and cut costs in half, which according to Dr. Martin could prompt a “technology leap that could be absolutely important for the future of EVs.”

On the other end of the spectrum, four of the funded projects in the RANGE program focus on integrating EV batteries into the vehicle structure itself, which could reduce vehicle weight, increase driving range, and strengthen safety standards. One such project run by UC San Diego, funded at $3.49 million, is developing EV batteries as part of the vehicle’s support structure, which will be incorporated into a redesign of the standard vehicle frame. The principle investigator on the project, Professor Yu Qiao commented, “According to our analysis, if low-cost, relatively-high-energy batteries can be robust and multifunctional with the vehicle structure redesigned, drive range can be increased to 250-300 miles at an affordable price.” The project’s work focuses on creating batteries that can continue to operate safely and efficiently under adverse conditions, in addition to improving EV cost and performance.

Next Previous

Page:   1   |   2   |   3

Subscribe to Recharge
Get the Monitor stories you care about delivered to your inbox.