Share this story
Close X
Switch to Desktop Site

How do you find a Higgs boson? A crash course. (+video)

Scientists are using the $10 billion Large Hadron Collider in their search for the Higgs boson. Understanding how it works explains why it has proven so hard to find the Higgs boson.

Scientists at the world's largest atom smasher near Geneva have found evidence of a new sub-atomic particle that they have been searching for nearly 50 years.
About these ads

Butterfly scientists have their $24 nets. Well-heeled birders have their $2,000 Swarovski binoculars. Particle physicists have their $10 billion Large Hadron Collider.

If that price tag sounds a little steep – even in the quest to find the elusive Higgs boson, which could answer the longstanding question of why the fundamental building blocks of matter have mass – consider what it is trying to do. 

If theories are correct, the Higgs boson existed only during the first millionth of a millionth of a second after the Big Bang some 13.6 billion years ago. As the universe cooled, all the Higgs bosons decayed into other particles. That means to find it, scientists have to make it themselves, recreating the high energies that existed when the universe was only a millionth of a millionth of a second old. 

To do this researchers use the LHC to accelerate protons to within a whisker of the speed of light, then steer them into head-on collision. In the usual shorthand, that makes the LHC a proton collider. 

"Proton collider" is a misnomer, however, because the collisions actually occur among particles that make up protons, such as quarks and the gluons that bind the quarks together, says Lawrence Sulak, a physicist at Boston University who is working with one of the two Higgs-hunting teams. It's the particular combination of quarks that gives a proton its positive charge – the trait that allows scientists to use powerful magnets to guide and focus the LHC's proton beams.


Page:   1   |   2   |   3

Follow Stories Like This
Get the Monitor stories you care about delivered to your inbox.