Switch to Desktop Site
 
 

Scientists examine nothing, find something

Two studies of vacuums suggest that the speed of light in a vacuum might fluctuate, pointing the way to a quantum mechanical explanation for why the speed of light and other so-called constants are what they are.

Image

A young person attempts to navigate a laser maze during the grand opening ceremony for the Angry Birds Space Encounter at the Kennedy Space Center earlier this month. Researchers say that the speed of light in a vacuum, long thought to be a universal constant, may actually fluctuate.

Malcolm Denemark/Florida Today/AP

About these ads

Where did the speed of light in a vacuum come from? Why is it 299,792,458 meters per second and not some other figure?

The simple answer is that, since 1983, science has defined a meter by the speed of light: one meter equals the distance light travels in one 299,792,458th of a second. But that doesn't really answer our question. It's just the physics equivalent of saying, "Because I said so." 

Unfortunately, the deeper answer has been equally unsatisfying: The speed of light in a vacuum, according to physics textbooks, just is. It's a constant, one of those numbers that defines the universe. That's the physics equivalent of saying, "Because the cosmos said so." 

Or did it? A pair of studies suggest that this universal constant might not be so constant after all. In the first study, Marcel Urban from the University of Paris-Sud and his team found that the speed of light in a vacuum varies ever so slightly.

Are you scientifically literate? Take our quiz Are you scientifically literate? Take our quiz
 

This happens because what we think of as nothing isn't really nothing. Even if you were to create a perfect vacuum, at the quantum level it would still be populated with pairs of tiny "virtual" particles that flash in and out of existence and whose energy values fluctuate. As a consequence of these fluctuations, the speed of a photon passing through a vacuum varies, about 50 quintillionths of a second per square meter.

That may not sound like much, but it's enough to point the way toward a new underlying physics.

Next

Page:   1   |   2

Share